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We propose a scheme for studying thin liquid films on a solid substrate using a phase field model. For a van
der Waals fluid—far from criticality—the most natural phase field function is the fluid density. The theoretical
description is based on the Navier-Stokes equation with extra phase field terms and the continuity equation. In
this model free of interface conditions, the contact angle can be controlled through the boundary conditions for
the density field at the solid walls �L. M. Pismen and Y. Pomeav, Phys. Rev. E 62, 2480 �2000��. We
investigate the stability of a thin liquid film on a flat homogeneous solid support with variable wettability. For
almost hydrophobic surfaces, the liquid film breaks up and transitions from a flat film to drops occur. Finally,
we report on two-dimensional numerical simulations for static liquid drops resting on a flat horizontal solid
support and for drops sliding down on inclined substrates under gravity effects.
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I. INTRODUCTION

Wetting and drying phenomena are a place where chem-
istry, physics, materials science, and engineering overlap.
Plasma treatment or silanization can modify the chemical
properties of the solid surface, and hence the surface tensions
at solid-vapor and solid-liquid interfaces. These interfacial
tensions are responsible for the behavior and properties of
commonly used materials such as paints, ink jets, adhesives,
detergents, or lubricants. The solid interfacial tension cannot
be measured directly. However, measurements can be done
indirectly by means of the contact angle of a liquid drop on
a solid surface.

The contact angle—the angle between the liquid-vapor
interface and the solid support—is specific for any given
system and is determined by interactions across the three
interfaces. Most often, the concept is illustrated with a small
liquid droplet resting in a gas atmosphere on a flat horizontal
solid surface �see Fig. 1�. The theoretical description of the
contact angle arises from the consideration of a thermody-
namic equilibrium between the three phases: the liquid phase
of the droplet, the solid phase of the substrate, and the gas
and/or vapor phase of the ambient. At equilibrium, the
chemical potential in the three phases should be equal. It is
convenient to frame the discussion in terms of interfacial
energies. We denote the solid-vapor interfacial energy as �SV,
the liquid-solid interfacial energy as �LS, and the liquid-
vapor energy �i.e., the surface tension� as �LV. The shape of
the droplet is determined by the Young-Laplace equation
which balances the stresses on the contact line �1�,

�SV − �LS = �LV cos � , �1�

with � the contact angle.
There are many ways to characterize contact lines, and

particularly moving-line problems. Much effort has been put
into studying such problems through asymptotic analysis
�see Refs. �2–6�, and references therein� and numerical simu-
lations. Numerical simulations for contact line phenomena

are mostly based on the sharp interface models �7–9�. In the
sharp interface method the interface is tracked by a local
moving mesh and has zero thickness. The interface boundary
conditions are included into the discrete system of equations
at the interface adjacent grid points.

Lattice Boltzmann methods and phase field models pro-
vide an alternate description wherein the interface between
two fluids is considered to have a nonzero thickness en-
dowed with physical properties such as surface tension. The
lattice Boltzmann methods are kinetic methods which com-
pute the system evolution according to a given interparticle
potential. The microscopic properties of the system are de-
scribed by distribution functions which obey the Boltzmann
equation with different collision terms. The rules governing
the collisions between the particles are designed such that the
time averaged motion of the particles is consistent with the
Navier-Stokes equation. The phase field models are con-
tinuum thermodynamical models. In the phase field method
one introduces an order parameter to the usual set of vari-
ables to give an explicit indication of the thermodynamic
phase in each point of the system. This variable is governed
by a partial differential equation over the entire domain and
is coupled to velocity, temperature, and concentration fields.
For both models the interface is captured implicitly by gra-
dient terms of the density and/or phase field in the free-
energy functional of the system. So, the interface does not
need to be explicitly tracked. Concerning simulation of dy-
namic wetting the lattice Boltzmann methods showed con-
siderable success, see Refs. �10,11�.

Here, we focus our attention on the phase field model
which is the mathematical tool of the present paper. Pro-
posed by Langer in an ad hoc manner, the phase field meth-
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FIG. 1. Balance of stresses at the three-component contact
line.

PHYSICAL REVIEW E 78, 066307 �2008�

1539-3755/2008/78�6�/066307�6� ©2008 The American Physical Society066307-1

http://dx.doi.org/10.1103/PhysRevE.78.066307


odology has achieved significant importance in modeling so-
lidification phenomena �12–14�. In �15� particular attention
is paid to systems described by more complicated order pa-
rameters than simple scalars, for example, vectors and tensor
fields. The latter are needed to describe phase ordering in
nematic liquid crystals. For hydrodynamic systems the phase
field models can be simplified using the Cahn-Hilliard equa-
tion for incompressible media �15–17� or long-wave approxi-
mation for thin films �18�. Thus, for fluid-fluid systems, Bray
�15� analyzed the phase separation in binary liquids,
Seppecher �16� and Jacqmin �17� investigated moving con-
tact lines for incompressible viscous fluids, and Thiele et al.
�18� studied sliding drops on slightly sloped planes and small
contact angles.

Recently we proposed a phase field model for Marangoni
convection in compressible fluids of van der Waals type far
from criticality. We chose the fluid density � as order param-
eter. With the help of the phase variable �, all the system
parameters can be expressed as functions varying continu-
ously from one medium to the other. Therefore, the problem
is treated similar to an entire one phase problem and the
interface conditions are substituted by some extra terms in
the Navier-Stokes equation. The partial differential equation
which obeys the phase variable � is the continuity equation.
The model previously developed for a two-layer geometry
�19–22� is extended in this paper to drops and bubbles. Here,
the aim is to examine numerically the stability of thin films
as well as static and dynamical contact angles.

The outline of the paper is as follows: The phase field
model for a two-phase system is briefly depicted in Sec. II.
The contact angle description in phase field formulation is
given in Sec. III. Section IV investigates the stability of liq-
uid films on a flat solid support with variable wettability and
the breakup of an unstable thin liquid film to drops for hy-
drophobic surfaces. Computer simulations for static liquid
drops resting on a flat horizontal solid support and for falling
drops on inclined substrates under the gravity effects are pre-
sented here. We gather the conclusions in Sec. V.

II. THE FORMALISM

We study a liquid with its own vapor, a situation for
which the most natural phase field variable is the density �,
scaled by the liquid density. So �=1 designates the liquid
phase and ��0 the vapor bulk. For a two-phase system with
diffuse interface and without evaporation phenomena the
Helmoltz free-energy functional is given by �see, e.g., Refs.
�13,15,19,23,24��

F��� = �
V
� f��� +

K
2

����2�dV , �2�

where the first term in Eq. �2� represents the free-energy
density for the homogeneous phases. For a system in equi-
librium and without interfacial mass exchange the free-
energy density has the form of a double-wall potential with
two minima corresponding to the two alternative phases: �
=1 for the liquid and �=0 for the vapor state. We choose the
free-energy density given by

f��� =
C

2
�2�� − 1�2. �3�

The second term in the free-energy functional �2� is a “gra-
dient energy” which is a function of the local composition.
For a flat interface of area �A between two coexisting iso-
tropic phases, we obtain the following for the total free-
energy F��� of the system:

F = �A�
−�

+� � f��� +
K
2
	 ��

�z

2�dz .

The specific interfacial free-energy �LV �or simply �� is, by
definition, the difference per unit area of interface between
the actual free energy of the system and that which it would
have if the properties of the phases were continuous through-
out. Hence the free-energy excess of the interface takes the
form �25�

� = �
−�

+�

K	 ��

�z

2

dz , �4�

which gives a direct connection between the surface tension
coefficient � and the gradient energy term K��� /�z�2 /2.

As already shown in �19� or �20�, minimizing the free-
energy functional �2�, one can derive the nonclassical phase
field terms which has to be included in the Navier-Stokes
equation for assuring the shear stress balance at the droplet
interface

�
dv�

dt
= − �p + � � „� · �K � ��…

+ � · �� � v�� + ��	 � · v�� + �g� ,

	 �
�

3
, �5�

with p=��f��� /��− f��� the thermodynamic pressure. To
close the system of equations we need an evolution equation
for the phase field. The fluid density � obeys the continuity
equation

��

�t
+ � · ��v�� = 0 �6�

so that the mass conservation is fulfilled. We solve the prob-
lem numerically, starting from an initial noise density

��x,z� = a
�x,z� + �̄ ,

where a is the noise intensity, 
�x ,z� is a uniformly random
distribution between 0 and 1, and �̄ was chosen to be zero. A
randomly distributed initial density may act as seeds for
phase separation in the van der Waals fluid. In the latter,
drops or bubbles are found by nucleation and coarsening.
The system evolves to drops in a vapor atmosphere or
bubbles in a liquid, depending on the total mass �for more
details, see �26��. Figure 2 displays two-dimensional �2D�
time series in the �x ,z� plane for the formation of a liquid
drop in a vapor atmosphere for an isothermal system without
gravity. The density distributions are represented using gray
scale, with white and black for liquid and vapor, respectively.
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III. CONTACT ANGLE DESCRIPTION IN PHASE FIELD
FORMULATION

The boundary conditions for the density field at the solid
walls play an important role for the contact angle at the solid
surface and determines the position of the droplet. In our
model we control the contact angle through the density at the
solid boundary �S. Pismen et al. assume that for short-ranged
solid-fluid interactions compared to the thickness of the dif-
fuse vapor-liquid interface, a supplementary energy term
�int��S� can be locally added in the free-energy functional �2�
in the vicinity of the wall. This term is an arbitrary function
of �S and describes the fluid-solid interactions. On the other
hand, a nonvanishing variation of the density is allowed at
the solid boundary ��S, when the energy functional is varied.
Choosing a polynomial function for the dependence of the
fluid-solid interaction energy �int on the fluid density at the
solid surface, �S, after some mathematical manipulations,
they proved that the only condition enforced on the solid
surface is

� = �S. �7�

A flat solid surface with variable wettability can be realized
by varying �S in the range 0��S�1 �from nonwetting to
fully wetting�.

Using �F /��=0, the surface tension coefficient �4� can
be expressed as �24�

� = �
−�

+�

K	 ��

�z

2

dz = �
�v

�l �2Kf���d� .

For the free-energy density �3� and for the partial wetting
case �0��S�1�, the interfacial energies �SV, �LS, �LV from
�1� become, respectively,

�SV = �
0

�S �KC��1 − ��d� =
�KC

6
�1 − 3�S

2 + 2�S
3� , �8�

�LS = �
�S

1

�KC��1 − ��d� =
�KC

6
�3�S

2 − 2�S
3� , �9�

�LV = �
0

1

�KC��1 − ��d� =
�KC

6
. �10�

Inserting Eqs. �8�–�10� into the Young-Laplace equation �1�,
one obtains an analytical relation between the static contact
angle and the solid density �S �24�,

cos � = − 1 + 6�S
2 − 4�S

3. �11�

IV. NUMERICAL SIMULATIONS

We scale the variables by using d, d2 /
l, 
l /d as units for
the length, time, and velocity, where d=�K

C represents the
characteristic thickness of the diffuse interface and 
l is the
liquid kinematic viscosity �the index “l” describes the liquid
parameters and the index “v” the vapor parameters�. The
following nondimensional parameters appear: Ca= K

�l
l
2 , the

capillary number, and G= gd3


l
2 , the Galileo number. For the

numerical results presented in this section, �v /�l�10−3, Ca
=5, and G�10−5.

We developed a numerical code in two dimensions based
on a finite-difference method with central differences with
400�200 mesh points �27,28�. A similar computational code
was earlier developed for 2D phase field models describing
floating liquid droplets with applied temperature gradient
�26�. The distance between two mesh points is �x=�z=2
and the integration time step is �t=0.05. The characteristic
interface thickness d=�K

C is smaller than the total thickness
of the interface, mostly defined as those corresponding to a
fluid density variation from 0.1 to 0.9. �In the diffuse inter-
face one has around seven lattice points.� If the characteristic
interface thickness is assumed to be d�1 nm, the simula-
tions presented below would correspond to a box with
800 nm�400 nm. No-slip conditions for the velocity field
are imposed at the wall boundaries �v� =0�.

(a)

(b)

(c)

FIG. 3. �Color online� The density field at the solid walls may
favor the drop to be in contact with the solid surface: �a� �S=0.1;
�b� �S=0.4; �c� �S=0.7.

FIG. 2. Drop formation in a vapor atmosphere under micrograv-
ity conditions.
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A. Static contact angles

First, we neglect the gravitational force in Eq. �5�. For the
simulations illustrated in Fig. 2 we imposed �S=0 at all four
solid boundaries. Here, the liquid drop is pushed away from
each wall and after a while a single liquid droplet is obtained
in the middle of the box. This is the “no-wetting” case �Lotus
effect�. Indeed, replacing �S=0 in Eq. �11� yields �=180°,
i.e., no-wetting phenomena at the solid boundaries.

In the following we impose periodic lateral boundary con-
ditions. At the top boundary we assume �=0. At the bottom
boundary we consider the solid substrate where �=�S �with
�S as the control parameter, a number between 0 and 1�. For
�S�0 the drop is attracted to the wall. The boundary condi-
tions now favor the droplet to be in contact with the solid
surface �see Fig. 3�. The final position of the drop depends
on the initial random distribution. The small nuclei, from an
early stage of evolution, are in a continuous competition be-
tween the coarsening phenomena and the migration to the
wall.

The situations illustrated in Fig. 3 correspond to the
“partial-wetting” case. Apparent static contact angles were
measured using contour plots �level 0.5� of the phase field
variable in which tangent lines are drawn at the “macro-
scopic foot” of the spreading droplet. For �S=0.1, the appar-
ent static contact angle measured from Fig. 3�a� is ��161°.
For the same situation the Young-Laplace equation �11� gives
�=162°. For �S=0.4 one obtains numerically and analyti-
cally the same angle �=107°. For �S=0.7 the static contact
angle from Fig. 3�c� is ��52° and the relation �11� gives
�=55°. That means an excellent agreement between our
phase field simulations and the analytical formula �11�.

B. Stability of thin liquid films and the chemical potential

The origin of the predicted wetting behavior can be un-
derstood in terms of the dependence of the chemical poten-
tial on the film thickness. Pismen and Pomeau �24� studied
the Euler-Lagrange equation of Eq. �2� in terms of the
chemical potential

� =
�f

��
− K�2�

�z2 �12�

with only one free parameter determined by the wetting
properties of the fluid. They considered a three phase �solid-
liquid-gas� contact line and computed the interaction force
between the liquid-gas interface and the solid support. It
turns out that this force can be repelling �medium and very
short distances� or attracting �short and long distances�, al-
lowing for two homogeneous and stationary solutions for the
film thickness, depicted in Fig. 4 for �=0 and �S=0.9. The
dotted lines emphasize the two coexisting heights for the
chemical potential �=0, hmin�5 and hmax�28, respectively.

The functional dependence of � on h as shown in Fig. 5 is
analytically derived in �24� for the restricted case �S=1−�,
��1 �corresponding to a hydrophilic wetting surface�. Here
we shall give numerical solutions of Eq. �12� for any kind of
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FIG. 4. Two coexisting kink solutions of Eq. �12�, correspond-
ing to two different film thicknesses with the same chemical poten-
tial. For �S=0.9 and �=0 the two coexisting heights are hmin�5
and hmax�28, respectively. The unit d in the z axis label represents
a characteristic thickness of the diffuse interface, see the text.
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FIG. 5. The chemical potential versus film thickness for differ-
ent wettability properties of the solid boundary. This plot results
from the numerical investigation of Eq. �12� in one dimension un-
der the boundary conditions: ��z=0�=�S and ��z→��=0 with � as
the free parameter. The axis label unit d represents a characteristic
length of the diffuse interface.
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FIG. 6. Location of the maximum of the chemical potential
plotted in Fig. 5 for different wettabilities of the solid support. The
maximum vanishes at very small �S because one of the kink solu-
tions disappears. For small �S there exists no inflection point on the
curve for hmin in Fig. 4. The thickness hmin of the precursor film
cannot be defined. �The axis label unit d represents a characteristic
thickness of the diffuse interface.�
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surface �from no wetting to fully wetting�, taking �S as the
control parameter of wettability. A plot of the chemical po-
tential for different �S is shown in Fig. 5. To this end, we
computed solutions of Eq. �12� which fulfill the boundary
conditions ��z=0�=�S and ��z→��=0. For a given �, two
different solutions are found. One is decreasing monotoni-
cally with increasing z, the other increases for small z,
reaches a plateau �the liquid phase�, and decreases afterwards
to zero. As sketched in Fig. 4, the inflection points of ��z�
define the thicknesses hmin and hmax. In Fig. 5, in the region
where the slope of the chemical potential is negative, the flat
film is unstable to arbitrarily small disturbances. The maxi-
mum of the curves represented in Fig. 5 is shifted to the left
for decreasing �S and vanishes completely for �S�0.3 �Fig.
6�. This fact reveals that thin liquid films become very un-
stable on hydrophobic surfaces. If the surface of a flat film is
unstable to spatial disturbances, pattern formation sets in,
which can be seen in the two-dimensional simulations from

the next paragraph �Figs. 7 and 8 from below�.

C. Dynamic contact angles

Next, we start from an initial flat liquid layer of thickness
h0 described by the density �̄=1. The flat film is destabilized,
adding a small disturbance a
�x ,z� to the density field with
the noise amplitude a=0.001. As one can see from Fig. 5, for
�S=0.5 and h0=40 the thin liquid film is unstable. The liquid
film breaks up to produce numerous disconnected droplets,
as shown in the Figs. 7 and 8. The snapshots from Fig. 7
corresponds to an initial unstable liquid film �with h0=40,
�S=0.5� under microgravity conditions and Fig. 8 displays
the evolution of the same liquid layer in the presence of
gravity effects on an inclined solid support. In both situa-
tions, via coarsening, in a late state of evolution only one
single drop remains. In Fig. 7 the single remaining drop rests
on the substrate, in Fig. 8�e� the drop travels from left to
right with constant velocity. For the traveling drop from Fig.
8�e� the scaled drop velocity is V=0.028, that means the
Reynolds number for our system is around Re=V=0.028.

For a liquid droplet on a sloped solid support, the pres-
ence of the tangential component of gravity force leads to
different contact angles: the advancing contact angle �a in
the front of the moving drop and the receding contact angle
�r in the back �with �a��r�. For the same mass in the system

(a) (b)

(c) (d)

FIG. 7. �Color online� Transitions in a thin unstable liquid layer
under microgravity conditions: �a� t=950; �b� t=1400; �c� t=2800;
�d� t=75 000 �h0=40, �S=0.5�.

(a)

(b) (c)

(d) (e)

FIG. 8. �Color online� �a� Sketch of a falling liquid film on a
sloped plane. �b�–�e� Transitions from a thin flat unstable liquid
layer to a drop running down on an inclined substrate under gravity
effects: �b� t=950; �c� t=4000; �d� t=25 000; �e� t=75 000 �h0

=40, �=30°, �S=0.5�.

(a)

(b)

(c)

FIG. 9. �Color online� Liquid droplet in its own vapor sliding on
a sloped solid surface �from left to right� under gravity effects: �a�
�S=0.1; �b� �S=0.5; �c� �S=0.7. Streamlines refer to the system
moving with the drop �h0=40, �=30°�.
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and for the same plane inclination Fig. 9 shows the advanc-
ing and receding angles for different wettabilities of the
substrate.

In these pictures the streamlines inside and around the
drop refer to the comoving frame of reference. The stream-
line representation emphasizes the self-interaction of the
drop. This effect is induced by the lateral periodic boundary
conditions. In fact, one considers a chain of drops moving
one behind the other at a distance equal to the spatial peri-
odicity. The constant body force per unit volume �the tangen-
tial component of gravity force density� parallel to the solid
surface together with the boundary conditions imposes a
Poiseuille-type flow. As one can observe from Fig. 9, the
vapor speed at the top of the droplet acts as a blowing wind
in the same direction with the droplet movement. The blow-
ing wind at the top of the droplet induces a rotation motion
of the fluid inside the droplet. So, as depicted in Fig. 9 the
drop fluid rolls for both hydrophobic and hydrophilic
substrates.

V. CONCLUSION

Summarizing, we have investigated film breakup, drop
spreading, and drop motion on a flat solid surface with vari-
able wettability using a phase field model. The phase field
model previously used for describing Marangoni convection
in two-layer systems �19–22� is extended in this paper to

drop dynamics on homogeneous substrates. The interactions
near a three-phase �solid-liquid-gas� contact line are de-
scribed using the boundary conditions analytically derived in
�24�. The apparent static contact angle numerically computed
in this paper is in excellent agreement with the analytical
formula �11� given by Pismen et al.

For inclined planes our phase field simulations are able to
describe advancing and receding contact angles for moving
contact lines. The flow motion inside and around the droplet
is analyzed. This work is a necessary precursor to understand
aspects of interface motions. It allows one to visualize the
flow inside a traveling drop, which is very difficult to realize
experimentally.

A straightforward but challenging task would be to per-
form simulations of liquid spreading on a solid support with
real properties and to investigate the contact angles on heated
substrates, i.e., taking into account the interfacial heat ex-
change at the liquid-vapor interface and the Marangoni
effect, too.
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